Remove AI Watermarks

Back to Blog
How to Check If a Text Has a ChatGPT Watermark (Complete Guide 2025)
The CodeCave GmbH

How to Check If a Text Has a ChatGPT Watermark (Complete Guide 2025)

Learn 7 proven methods to check if text has ChatGPT watermarks. From instant online tools to advanced detection techniques—identify invisible AI markers in any content.

how to check chatgpt watermarkcheck for ai watermarkverify chatgpt texttest for invisible characterschatgpt watermark checker

Introduction

Need to verify if a piece of text contains ChatGPT watermarks? Whether you're checking student submissions, reviewing documents, debugging code, or simply curious, this guide provides seven reliable methods to detect invisible AI markers.

From instant online checkers to advanced technical approaches, you'll learn how to identify ChatGPT watermarks with confidence—even when they're designed to be undetectable.

Quick Answer: The Fastest Way to Check

The 30-Second Method:

  1. Visit GPT Watermark Remover
  2. Paste your text (or upload document)
  3. Click "Check for Watermarks" or "Detect"
  4. View instant results

What you'll see:

  • ✅ "No watermarks detected" (clean text)
  • ⚠️ "47 watermarks found" (detailed breakdown)

Time: 5-10 seconds Accuracy: 99%+ for character-based watermarks Privacy: 100% browser-based

Now let's explore all methods in detail.

Method 1: Online Watermark Checker (Recommended)

Why This Method Is Best

Advantages: ✅ No technical knowledge required ✅ Instant results (under 10 seconds) ✅ Detects all common watermark types ✅ Visual highlighting of problematic areas ✅ Works with documents (Word, Pages, PDF) ✅ 100% private (browser-based processing) ✅ Free unlimited checks

Step-by-Step Process

Step 1: Prepare Your Text

For plain text:

  • Copy the text you want to check
  • No special preparation needed

For documents:

  • Keep file in original format (.docx, .pages, .pdf)
  • No conversion necessary

Step 2: Access the Checker

Navigate to GPT Watermark Remover

Step 3: Input Your Content

Option A - Paste Text:

  • Click in the text area
  • Paste content (Ctrl+V / Cmd+V)
  • Text can be any length

Option B - Upload Document:

  • Click "Upload Document"
  • Select file from computer
  • Supported formats: .docx, .pages, .pdf, .txt, .rtf

Step 4: Run Detection

Click the detection button:

  • "Check for Watermarks"
  • "Detect Invisible Characters"
  • "Analyze Text"

Step 5: Interpret Results

Clean Text Result:

✓ No ChatGPT watermarks detected

Analysis:
- Zero-width spaces: 0
- Zero-width non-joiners: 0
- Zero-width joiners: 0
- Other invisible characters: 0

Assessment: This text appears clean

Watermarked Text Result:

⚠ Watermarks Detected: 47 invisible characters

Breakdown:
- Zero-Width Space (U+200B): 23 occurrences
- Zero-Width Non-Joiner (U+200C): 15 occurrences
- Zero-Width Joiner (U+200D): 9 occurrences

Distribution: Regular pattern detected
Density: 4.7 watermarks per 100 characters
Likelihood: High probability of AI watermarking

Location Preview:
Line 3: "The​ implementation​ of​ this..."
Line 7: "We​ recommend​ using​ the..."
[View all locations]

Recommendation: Remove watermarks before use

Step 6: Take Action

Based on results:

  • No watermarks: Text is clean, use freely
  • Watermarks found: Click "Remove Watermarks" for cleaned version

Interpreting Watermark Density

DensityCount (per 1000 chars)Assessment
None0Clean text
Very Low1-5Possibly accidental
Low6-20Suspicious
Medium21-50Likely watermarked
High51-100Definitely watermarked
Very High100+Heavily watermarked

Method 2: Character Count Comparison Test

This simple method reveals invisible characters without any tools.

How It Works

Invisible characters add to file size but not visual character count.

Step-by-Step Process

Step 1: Check Visual Character Count

In Microsoft Word:

  • Select all text (Ctrl+A / Cmd+A)
  • Check status bar (shows character count)
  • Note: "1,247 characters"

In Google Docs:

  • Tools → Word Count
  • Note character count (with spaces)

In any text editor:

  • Select all and copy
  • Paste into character counter (search "character counter online")
  • Note the count

Step 2: Check Byte Size

Windows:

# Save text as UTF-8 file, then:
dir /s filename.txt
# Note size in bytes

Mac/Linux:

wc -c filename.txt
# Returns byte count

Or use programming:

const text = "Your text here";
const byteSize = new Blob([text]).size;
console.log(`Bytes: ${byteSize}`);

Step 3: Compare

Visual characters: 1,247
Byte size: 1,312 bytes

Difference: 65 bytes
Invisible characters: ~21 (assuming 3 bytes per character)

Verdict: Text contains invisible characters (likely watermarks)

Rule of thumb:

  • Difference < 5 bytes: Likely clean
  • Difference 5-20 bytes: Possibly a few invisible chars
  • Difference > 20 bytes: Likely watermarked

Limitations

  • Doesn't identify which characters or where
  • Different encodings affect byte counts
  • Can't distinguish between watermarks and legitimate Unicode

Method 3: Text Editor Visibility Check

Most text editors can reveal invisible characters if you know where to look.

Microsoft Word

Method A: Show Formatting Marks

  1. Click "Home" tab
  2. Click ¶ (Show/Hide button) in Paragraph group
  3. Look for unusual dots or marks between words
  4. Normal space shows as · (middle dot)
  5. Invisible characters show as small boxes or nothing

Method B: Copy-Paste Test

  1. Copy text to plain Notepad
  2. Paste and look for:
    • Unexpected line breaks
    • Unusual spacing
    • Strange cursor behavior
  3. Try selecting text—invisible chars show as selection gaps

Method C: Find Function

  1. Press Ctrl+F
  2. Click "More >>"
  3. Search for: ^u200B
  4. If found: watermarks present
  5. Repeat for: ^u200C, ^u200D, ^u00AD, ^u2060

VS Code / Text Editors

Enable whitespace visualization:

VS Code:

  1. View → Render Whitespace
  2. Or press Ctrl+Shift+P → "View: Toggle Render Whitespace"
  3. Invisible characters show as colored dots or symbols

Sublime Text:

  1. View → Show Console
  2. Paste detection code:
import re
text = view.substr(sublime.Region(0, view.size()))
count = len(re.findall(r'[\u200B-\u200D\uFEFF\u00AD\u2060]', text))
sublime.message_dialog(f"Watermarks found: {count}")

Notepad++:

  1. View → Show Symbol → Show All Characters
  2. Invisible characters appear as special symbols
  3. Or use Find (Ctrl+F) → Extended mode
  4. Search for: \x{200B}, \x{200C}, \x{200D}

Method 4: Browser DevTools Check

For technically-minded users, browser DevTools provide powerful detection.

Chrome/Edge DevTools

Step 1: Open DevTools

  • Press F12 or Ctrl+Shift+I (Windows)
  • Press Cmd+Option+I (Mac)

Step 2: Go to Console Click "Console" tab at top

Step 3: Paste Text into Variable

const text = `Paste your text here`;

Step 4: Run Detection Code

// Comprehensive watermark check
function checkWatermarks(text) {
  const types = {
    'Zero-Width Space': /\u200B/g,
    'Zero-Width Non-Joiner': /\u200C/g,
    'Zero-Width Joiner': /\u200D/g,
    'Soft Hyphen': /\u00AD/g,
    'Word Joiner': /\u2060/g,
    'Byte Order Mark': /\uFEFF/g
  };

  console.log('%c=== Watermark Detection Results ===', 'color: blue; font-size: 16px; font-weight: bold');

  let totalFound = 0;
  const findings = [];

  for (const [name, pattern] of Object.entries(types)) {
    const matches = text.match(pattern);
    const count = matches ? matches.length : 0;

    if (count > 0) {
      console.log(`%c${name}: ${count}`, 'color: red; font-weight: bold');
      totalFound += count;
      findings.push({ name, count });
    }
  }

  if (totalFound === 0) {
    console.log('%c✓ No watermarks detected!', 'color: green; font-size: 14px; font-weight: bold');
  } else {
    console.log(`%c\n⚠ Total watermarks found: ${totalFound}`, 'color: red; font-size: 14px; font-weight: bold');

    // Calculate density
    const density = (totalFound / text.length * 1000).toFixed(2);
    console.log(`%cDensity: ${density} per 1000 characters`, 'color: orange');

    // Show first occurrence
    const firstMatch = text.search(/[\u200B-\u200D\uFEFF\u00AD\u2060]/);
    if (firstMatch !== -1) {
      const preview = text.substring(Math.max(0, firstMatch - 20), firstMatch + 20);
      console.log(`%cFirst occurrence context: "${preview}"`, 'color: purple');
    }
  }

  return { totalFound, findings };
}

// Run the check
checkWatermarks(text);

Step 5: Review Console Output

Results appear color-coded:

  • Green: No watermarks
  • Red: Watermarks found
  • Numbers showing count by type

Advanced: Position Mapping

Find exact locations:

function mapWatermarkPositions(text) {
  const pattern = /[\u200B-\u200D\uFEFF\u00AD\u2060]/g;
  const positions = [];

  let match;
  while ((match = pattern.exec(text)) !== null) {
    const char = match[0];
    const pos = match.index;
    const line = text.substring(0, pos).split('\n').length;
    const col = pos - text.lastIndexOf('\n', pos - 1);

    positions.push({
      character: `U+${char.charCodeAt(0).toString(16).toUpperCase()}`,
      position: pos,
      line: line,
      column: col,
      context: text.substring(pos - 10, pos + 10).replace(/[\u200B-\u200D\uFEFF\u00AD\u2060]/g, '[⚠]')
    });
  }

  console.table(positions);
  return positions;
}

mapWatermarkPositions(text);

This creates a table showing:

  • Character type (Unicode code)
  • Exact position
  • Line and column numbers
  • Surrounding context

Method 5: Command-Line Detection

For developers, scripts provide powerful automation.

Python Script

#!/usr/bin/env python3
"""
Check text for ChatGPT watermarks
Usage: python check_watermarks.py file.txt
"""

import sys
import re
from pathlib import Path

# Invisible characters pattern
PATTERN = r'[\u200B-\u200D\uFEFF\u00AD\u2060]'

WATERMARK_TYPES = {
    '\u200B': 'Zero-Width Space',
    '\u200C': 'Zero-Width Non-Joiner',
    '\u200D': 'Zero-Width Joiner',
    '\u00AD': 'Soft Hyphen',
    '\u2060': 'Word Joiner',
    '\uFEFF': 'Byte Order Mark'
}

def check_file(filepath):
    """Check a file for watermarks"""
    try:
        with open(filepath, 'r', encoding='utf-8') as f:
            text = f.read()

        # Find all watermarks
        matches = re.finditer(PATTERN, text)
        watermarks = list(matches)

        print(f"\n{'='*60}")
        print(f"File: {filepath}")
        print(f"{'='*60}")

        if not watermarks:
            print("✓ No watermarks detected")
            return False

        # Count by type
        type_counts = {}
        for match in watermarks:
            char = match.group()
            char_type = WATERMARK_TYPES.get(char, 'Unknown')
            type_counts[char_type] = type_counts.get(char_type, 0) + 1

        # Report findings
        total = len(watermarks)
        print(f"⚠ Watermarks detected: {total}\n")

        print("Breakdown:")
        for char_type, count in sorted(type_counts.items()):
            print(f"  - {char_type}: {count}")

        # Calculate density
        density = (total / len(text) * 1000) if text else 0
        print(f"\nDensity: {density:.2f} per 1000 characters")

        # Assess likelihood
        if density > 50:
            likelihood = "Very high"
        elif density > 20:
            likelihood = "High"
        elif density > 5:
            likelihood = "Medium"
        else:
            likelihood = "Low"

        print(f"Likelihood of intentional watermarking: {likelihood}")

        return True

    except Exception as e:
        print(f"Error: {e}")
        return False

if __name__ == "__main__":
    if len(sys.argv) < 2:
        print("Usage: python check_watermarks.py <file>")
        sys.exit(1)

    filepath = sys.argv[1]
    has_watermarks = check_file(filepath)
    sys.exit(1 if has_watermarks else 0)

Usage:

# Check single file
python check_watermarks.py document.txt

# Check and capture exit code
python check_watermarks.py file.txt && echo "Clean" || echo "Watermarked"

# Check multiple files
for file in *.txt; do
  python check_watermarks.py "$file"
done

Bash One-Liner

Quick terminal check:

# Count watermarks
grep -o $'\u200B\|\u200C\|\u200D\|\u00AD\|\u2060\|\uFEFF' file.txt | wc -l

# Show if any exist
if grep -q $'\u200B\|\u200C\|\u200D' file.txt; then
  echo "⚠ Watermarks detected"
else
  echo "✓ Clean"
fi

# Find files with watermarks in directory
find . -name "*.txt" -exec grep -l $'\u200B\|\u200C\|\u200D' {} \;

Node.js Script

#!/usr/bin/env node

const fs = require('fs');

const PATTERN = /[\u200B-\u200D\uFEFF\u00AD\u2060]/g;

function checkFile(filepath) {
  try {
    const text = fs.readFileSync(filepath, 'utf-8');
    const matches = text.match(PATTERN);
    const count = matches ? matches.length : 0;

    console.log(`\n${'='.repeat(60)}`);
    console.log(`File: ${filepath}`);
    console.log('='.repeat(60));

    if (count === 0) {
      console.log('✓ No watermarks detected');
      return false;
    }

    const density = (count / text.length * 1000).toFixed(2);

    console.log(`⚠ Watermarks detected: ${count}`);
    console.log(`Density: ${density} per 1000 characters`);

    return true;
  } catch (error) {
    console.error(`Error: ${error.message}`);
    return false;
  }
}

// Run
const filepath = process.argv[2];
if (!filepath) {
  console.log('Usage: node check_watermarks.js <file>');
  process.exit(1);
}

const hasWatermarks = checkFile(filepath);
process.exit(hasWatermarks ? 1 : 0);

Method 6: Hex Editor Inspection

The most technical method—viewing raw bytes.

Using HxD (Windows) or Hex Fiend (Mac)

Step 1: Open file in hex editor

Step 2: Search for byte patterns

Zero-Width Space: E2 80 8B Zero-Width Non-Joiner: E2 80 8C Zero-Width Joiner: E2 80 8D

Step 3: Count occurrences

Hex editors show frequency of each byte pattern

Step 4: Assess

  • Multiple occurrences = likely watermarks
  • Regular spacing = intentional watermarking
  • Random = possibly accidental

Method 7: Automated CI/CD Checking

Integrate watermark detection into your development workflow.

GitHub Actions

name: Check for Watermarks

on: [push, pull_request]

jobs:
  watermark-check:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2

      - name: Check files for watermarks
        run: |
          #!/bin/bash
          found_watermarks=false

          for file in $(find . -name "*.txt" -o -name "*.md" -o -name "*.py"); do
            if grep -q 
#x27;\u200B\|\u200C\|\u200D'
"$file"; then echo "⚠ Watermarks in: $file" found_watermarks=true fi done if [ "$found_watermarks" = true ]; then echo "❌ Watermarks detected in repository!" exit 1 else echo "✓ No watermarks detected" fi

Pre-Commit Hook

#!/bin/bash
# .git/hooks/pre-commit

echo "Checking for watermarks..."

FILES=$(git diff --cached --name-only --diff-filter=ACM)

for FILE in $FILES; do
  if [ -f "$FILE" ]; then
    if grep -q $'\u200B\|\u200C\|\u200D' "$FILE"; then
      echo "⚠ Watermarks detected in: $FILE"
      echo "Run: python clean_watermarks.py \"$FILE\""
      exit 1
    fi
  fi
done

echo "✓ No watermarks detected"
exit 0

Understanding Check Results

What Different Results Mean

Result: "0 watermarks detected"

  • Text is clean
  • Safe to use as-is
  • No invisible characters present

Result: "1-5 watermarks detected, low density"

  • Possibly accidental
  • May be legitimate Unicode usage (RTL text, etc.)
  • Check context before concluding AI generation

Result: "10-50 watermarks detected, medium density"

  • Likely intentional watermarking
  • High probability of AI generation
  • Consider removal if causing issues

Result: "50+ watermarks detected, high density"

  • Definitely intentional watermarking
  • Almost certainly AI-generated
  • Removal strongly recommended

Pattern Analysis

Regular spacing pattern:

Word[ZWSP]word[ZWSP]word[ZWSP]word

= Systematic AI watermarking

Random distribution:

Word[ZWSP]word[ZWNJ]several[ZWJ]words[ZWSP]later

= Sophisticated watermarking or accidental

Clustered:

Normal text here[ZWSP][ZWNJ][ZWJ]more normal text

= Copy-paste artifact or encoding issue

Troubleshooting Detection Issues

"No watermarks found" but text seems suspicious

Possible reasons:

  1. Statistical watermarks (not character-based)
  2. Watermarks already removed
  3. Different AI model (doesn't watermark)
  4. Human-written with AI-like style

Next steps:

  • Use AI content detectors (GPTZero, Originality.ai)
  • Analyze writing patterns manually
  • Check multiple sections

Detection tool gives error

Common issues:

  • File encoding not UTF-8
  • Corrupted file
  • Unsupported format
  • File too large

Solutions:

# Convert to UTF-8
iconv -f ISO-8859-1 -t UTF-8 input.txt > output.txt

# Check encoding
file -i filename.txt

# Reduce file size
head -n 1000 large_file.txt > sample.txt

Different methods give different results

Why:

  • Different characters scanned
  • Different sensitivity thresholds
  • Some methods detect statistical patterns
  • Some only detect character watermarks

Resolution: Use most comprehensive method (online checker) as authoritative

Best Practices for Regular Checking

For Educators

Workflow:

1. Receive student submission
2. Run quick check using [online tool](/)
3. If watermarks found:
   - Review the content
   - Check if AI usage is disclosed
   - Assess appropriateness
4. If suspicious:
   - Use additional AI detectors
   - Have conversation with student

For Developers

Git workflow:

# Add pre-commit hook
cp check_watermarks.sh .git/hooks/pre-commit
chmod +x .git/hooks/pre-commit

# Check before pull requests
python check_watermarks.py $(git diff --name-only main...HEAD)

For Content Managers

Publishing checklist:

☐ Run watermark check on all content
☐ Remove if found (unless disclosure required)
☐ Verify formatting intact after removal
☐ Final QA review
☐ Publish

For Organizations

Policy framework:

1. Establish AI usage policy
2. Require watermark checking for:
   - Client-facing content
   - Published materials
   - Legal documents
3. Train staff on checking methods
4. Implement automated checking where possible
5. Regular audits

Conclusion

Checking for ChatGPT watermarks doesn't have to be complicated. Whether you use the instant online checker, command-line scripts, or text editor methods, the key is having a reliable process you can trust.

Quick Recommendations:

  • Fastest: Online checker (5-10 seconds)
  • Most thorough: Browser DevTools with position mapping
  • Automation: Python script or pre-commit hooks
  • Non-technical: Text editor visibility + character count test

Remember: detecting watermarks is the first step. Understanding what to do with that information—respecting academic integrity, fixing technical issues, maintaining privacy—is equally important.

Check Your Text Now - Free Tool

Ready to check for ChatGPT watermarks?

👉 Check for Watermarks - Free & Instant

Features:

  • ⚡ Results in 5-10 seconds
  • 🔍 Detects all watermark types
  • 📊 Detailed analysis with visualization
  • 📄 Supports text and documents
  • 🔒 100% private (browser-based)
  • ✅ One-click removal if found
  • 🆓 Unlimited free checks

Related Articles:

Questions? Visit our FAQ or check your text now.

Ready to Remove AI Watermarks?

Try our free AI watermark removal tool. Detect and clean invisible characters from your text and documents in seconds.

Try GPT Watermark Remover